Thursday, December 14, 2006

Ohhhhh... NOW, I get it!! I can finally sleep again.



Space-time distortion and frame of reference

Objects in a gravitational field experience a slowing down of time, called time dilation. This phenomenon has been verified experimentally in the Scout rocket experiment of 1976,[13] and is, for example, taken into account in the Global Positioning System (GPS). Near the event horizon, the time dilation increases rapidly.

From the viewpoint of a distant observer, an object falling into a black hole appears to slow down, approaching but never quite reaching the event horizon. As the object falls into the black hole, it appears redder and dimmer to the distant observer, due to the extreme gravitational red shift caused by the gravity of the black hole. Eventually, the falling object becomes so dim that it can no longer be seen, at a point just before it reaches the event horizon.

From the viewpoint of the falling object, nothing particularly special happens at the event horizon. The object crosses the event horizon and reaches the singularity at the center within a finite amount of proper time, as measured by a watch carried with the falling observer.

From the viewpoint of the falling observer distant objects may appear either blue-shifted or red-shifted, depending on his exact trajectory. Light is blue-shifted by the gravity of the black hole, but is red-shifted by the velocity of the falling object.

No comments: